#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

COURSE PLAN

Academic Year 2019 – 20

Program:	B E – MECHANICAL
Semester :	VII
Course Code:	15ME753
Course Title:	MECHATRONICS
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	50
Course Plan Author:	DINESH P

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

15ME753 : Mechatronics	4
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	
4. Mapping Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

15ME753 : Mechatronics

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester :	4/VII	Academic Year:	2019-20
Course Title:	MECHATRONICS	Course Code:	15ME753
Credit / L-T-P:	3/3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	80Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Mr. DINESH P	Sign	Dt:
Checked By:		Sign	Dt:

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

шG.				
Modu	Module Content	Teaching	Module Concepts	Bloom
le		Hours		s Level
1	Introduction:Definition, Multidisciplinary Scenario,	10	Inter disciplinary	Level L2
	Evolution of Mechatronics, Design of Mechatronics system,		system	
	Objectives, advantages and disadvantages of Mechatronics.			
	Transducers and sensors: Definition and classification of transducers,			
	Difference between transducer and sensor, Definition and classification			
	of sensors, Principle of			
	working and applications of light sensors, proximity			
	switches and Hall Effect sensors.			
2	Microprocessor & Microcontrollers:Introduction,	10	Architecture	L2
	Microprocessor systems, Basic elements of control systems,			
	Microcontrollers, Difference between Microprocessor and			
	Microcontrollers.			
	Microprocessor Architecture: Microprocessor architecture			
	and terminology-CPU, memory and address, I/O and			
	Peripheral devices, ALU, Instruction and Program,			
	Assembler, Data, Registers, Program Counter, Flags, Fetch			
	cycle, write cycle, state, bus interrupts. Intel's 8085A			
2	Microprocessor.	10	x • 1	1.0
3	Programmable logic controller:Introduction to PLC's, basic	10	Logic control	L2
	structure, Principle of operation, Programming and concept			
	of ladder diagram, concept of latching & selection of a PLC.			
	Integration: Introduction & background, Advanced actuators,			
	Pneumatic actuators, Industrial Robot, different parts of a Robot-Controller, Drive, Arm, End Effectors, Sensor &			
	Functional requirements of robot.			
4	Mechanical actuation systems: Mechanical systems, types of	10	Actuators	L3
	motion, Cams, Gear trains, Ratchet & Pawl, belt and chain			
	drives, mechanical aspects of motor selection.			
	Electrical actuation systems: Electrical systems, Mechanical switches,			
	Solenoids, Relays, DC/AC Motors, Principle of Stepper Motors &			
	servomotors.			

	Electrical actuation systems:Electrical systems, Mechanical switches, Solenoids,Relays, DC/AC Motors, Principle of Stepper Motors & servomotors.			
5	Pneumatic and hydraulic actuation systems: Actuating systems, Pneumatic and hydraulic systems, Classifications of Valves, Pressure relief valves, Pressure regulating/reducing valves, Cylinders and rotary actuators. DCV & FCV: Principle & construction details, types of sliding spool valve, solenoid operated, Symbols of hydraulic elements, components of hydraulic system, functions of various units of hydraulic system. Design of simple hydraulic circuits for various applications.	10	Working Principles	L3

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

publication in formation of the concepts publications in journais, contenent of the	3. Research: Recent develo	pments on the concepts	- publications in	journals; conferences etc.
---	----------------------------	------------------------	-------------------	----------------------------

	earch. Recent developments on the concepts – publications in journais, conferences etc.	A
Modu le	Details	Available
-	Text books (Title, Authors, Edition, Publisher, Year.)	
	W.Bolton-Pearson Education, Mechatronics – Electronic Control Systems in	In Lib
	Mechanicaland Electrical Engineering, 1 st Edition, 2005	
	Reference books (Title, Authors, Edition, Publisher, Year.)	
	Mechatronics & Microprocessor by Dr. H D Ramchandra	In Dept
4,5		
C	Concept Videos or Simulation for Understanding	
C1	Introduction	
	https://youtu.be/Zla-D7wOvO4	
C2	Transducers and sensors	
	https://www.youtube.com/watch?v=nSeW3R2hr1A	
C3	Microprocessor & Microcontrollers	
	https://www.youtube.com/watch?v=6R7JDkpG1Wk&list=PLrjkTql3jnm8	
	HbdMwBYIMAd3UdstWChFH	
C4	Microprocessor Architecture	
	https://www.youtube.com/watch?v=XEMyFUuV31o	
C5	Programmable logic controller	
	https://www.youtube.com/watch?v=Q7kA7uv4dn4	
C6	Integration	
	https://www.youtube.com/watch?v=n6nxTBB16ag	
C7	Mechanical actuation systems	
	https://www.youtube.com/watch?v=EF7A37Keprc	
C8	Electrical actuation systems	
	https://www.youtube.com/watch?v=s0cJTlu_L2c	
C9	Pneumatic and hydraulic actuation systems	
	https://www.youtube.com/watch?v=MuMydSarx3c	
C10	DCV & FCV	
	https://www.youtube.com/watch?v=XDyTPlkwKak	
D	Software Tools for Design	
	https://www.youtube.com/watch?v=pWsmIhQIoa8	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Diuud	Students must have found the following courses / Toples with described content						
SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms	
	Code					Level	
1	15CCP13	Computer concepts	Microprocessor	I/II		L2	
		& Programming	1				

Students must have learnt the following Courses / Topics with described Content . . .

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu	Topic / Description	Area	Remarks	Blooms
les				Level
1	Construction and working of a sensors	Higher Study	Gap	Understand
				L2
2	Detail study of interrupts	Higher Study	Gap	Understand
				L2
3	SCARA Robots	Higher Study	Gap	Understand
				L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

#	Cos	Teach.	Concept	Instr	Assessment	Blooms'
	students should be able to	Hours		Method	Method	Level
15ME753.	Student will be able to understand multi		Inter	Chalk and	Assignment,	L2
1	disciplinary systems	3	disciplinary	Board	Unit test and	Understand
			system		IA	
15ME753.	Student will be able to understand			Chalk and	Assignment,	L2
2	working principles of transducer and	7	Components	Board	Unit test and	Understand
	sensors				IA	
15ME753.	Student will be able to understand		Processors	Chalk and	Assignment,	L2
3	microprocessors and controllers	4		Board	Unit test and	Understand
					IA	
15ME753.	Student will be able to understand the		Architect	Chalk and	Assignment,	L2
4	architecture of microprocessor		ure	Board	Unit test and	Understand
		6			IA	
15ME753.	Student will be able to understand the		Logic Control	Chalk and	Assignment,	L2
5	logic controllers	5		Board	Unit test and	Understand
					IA	
	Student will be able to understand		Integration	Chalk and	Assignment,	L2
6	concepts of automations	5		Board	Unit test and	Understand
					IA	
	Student will be able to understand	5	Mechanisms	Chalk and	Assignment,	L3 Apply
7	mechanism of mechanical actuators			Board	Unit test and	
					IA	
15ME753.	Student will be able to understand	5	Components	Chalk and	Assignment,	L3 Apply

8	mechanism of electrical actuators			Board	Unit test and IA	
15ME753	Student will be able to understand	5	Actuators	Chalk and	Assignment,	L3 Apply
	concepts of hydraulic and pneumatic	-	rectuators		-	Lompiy
	systems				IA	
15ME753.	Student will be able to understand	5	Working	Chalk and	Assignment,	L3 Apply
10	constructional features		principles	Board	Unit test and	
					IA	

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Modu	Application Area	CO	Level
les	Compiled from Module Applications.		
1	Multi functional	CO1	L2
1	Precision works	CO2	L2
2	Development	CO3	L2
2	Structure design	CO4	L2
3	Integration	CO5	L2
3	Automation	CO6	L2
4	Processing industries	CO7	L3
4	Actuation	CO8	L3
5	Fluid power	CO9	L3
5	Circuit design	CO10	L3

4. Mapping Justification

Map	ping	Justification	Mapping Level
СО	PO	-	
CO1	PO1	Knowledge of engineering fundamentals is required to understand the multidisciplinary scenario.	L2
CO1	PO2	Analysing the different multidisciplinary systems.	L2
CO2	PO1	Knowledge of engineering science is required to understand the mechatronics systems.	L2
CO2	PO2	Analysing the different principles and working of mechatronics systems.	L2
CO3	PO1	Knowledge of engineering science is required to understand the microprocessor and micro controller systems.	L2
CO3	PO2	Analysing the different elements of control systems.	L2
CO4	PO1	Knowledge of terminologies of microprocessor is required to understand the architecture system.	L2
CO4	PO2	Analysing the different microprocessors	L2
CO5	PO1	Knowledge of memory devices and logic functions	L2
CO5	PO2	Analysing the different programmable logic diagrams	L2
CO6	PO1	Knowledge of controlling devices.	L2
CO6	PO2	Analysing the different actuators.	L2
CO7	PO1	Knowledge of actuator	L3
CO7	PO2	Analysing the working of different mechanical actuation systems.	L3
CO8	PO1	Knowledge of electrical systems is required to understand the different actuation systems	L3
CO8	PO2	Analysing the working of different electrical actuation systems.	L3
CO9	PO1	Knowledge of engineering science required to understand the different Pneumatic and hydraulic systems.	L3
CO9	PO2	Analysing the working of different Pneumatic and hydraulic actuation systems.	L3

COURSE PLAN - CAY 2019-20

CO10	PO1	Knowledge of engineering science required to understand the different control valves.	L3
CO10	PO2	Analysing the principle and working of different control valves.	L3

Note: Write justification for each CO-PO mapping.

4. Articulation Matrix

(CO – PO MAPPING)

-	-	Course Outcomes		1	1		Progr						r					
Modules	#		PO1	PO	PO	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO	PO	PSO	PS	PS	Lev
		Student will be able to		2	3			6				0	11	12	1	O 2	O 3	el
1	15ME753.	Student will be able to	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
	1	understand multi																
		disciplinary systems																
1	15ME753.	Student will be able to	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
	2	understand working																
		principles of																
		transducer and sensors																
2	15ME753.	Student will be able to	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
	3	understand																
		microprocessors and																
		controllers																
2		Student will be able to	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
	4	understand the																
		architecture of																
2	16140752	microprocessor	2	2														1.0
3		Student will be able to	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
	5	understand the logic controllers																
		controllers																
3	15ME753	Student will be able to	2	2	-	-	-	_	-	-	_	_	_	_	_	_	_	L2
5	6	understand concepts	2	2														22
	0	of automation																
4	15ME753	Student will be able to	3	3	-	-	-	-	-	-	-	-	_	-	_	_	_	L3
	7	understand	5	5														20
		mechanism of																
		mechanical actuators																
4	15ME753.	Student will be able to	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
	8	understand																
	_	mechanism of																
		electrical actuators																
5	15ME753.	Student will be able to	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
	9	understand concepts																
		of hydraulic and																
		pneumatic systems																
5	15ME753.	Student will be able to	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
	10	understand																
		constructional features																
-	15ME753	Average attainment	2.1	2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		(1, 2, or 3)																
-	PO, PSO	1.Engineering Knowled																
		Investigations of Con																
		7.Environment and Si																
		11.Project Managemen																
		Base Management; S3.								~						-		

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
	Construction and working of a sensors	Seminar	3 rd week / date	Dr XYZ, Inst	List from B4 above
2					
3					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources	PO Mapping
les					Person	
2	Detail study of	Placement,	Presentation by	5 th week / date	Dr ABC, Inst.	List from B4
	interrupts	GATE, Higher	students		Self	above
		Study,				
		Entrepreneurship.				
4	SCARA Robots	Placement,	Presentation by	11 th week / date	Dr ABC, Inst.	List from B4
		GATE, Higher	students		Self	above
		Study,				
		Entrepreneurship.				

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Title Teaching No. of question in Exam					CO	Levels		
ule #		Hours		CIA-2	-		Extra	SEE	00	Levels
							Asg			
1	Introduction to Mechatronics	10	2	-	-	1	-	2	CO1,	L2
									CO2	
2	Microprocessor & Micro	10	2	-	-	1	-	2	CO3,	L2
	controllers								CO4	
3	Programmable logic controller	10	-	2	-	1	-	2	CO5,	L2,
									CO6	
4	Mechanical actuation systems	10	-	2	-	1	-	2	CO7,	L3
	5								C08	
5	Pneumatic and hydraulic actuation	10	-	-	4	1	-	2	CO9,	L3
	systems								CO10	
-	Total	50	4	4	4	5	-	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	15	CO1, CO2, CO3, CO4	L2
CIA Exam – 2	15	CO5, CO6, CO7, C08	L2, L3
CIA Exam – 3	15	CO9,CO10	L3
Assignment - 1	05	CO1, CO2, CO3, CO4	L2

COURSE PLAN - CAY 2019-20

Assignment - 2	05	CO5, CO6, CO7, CO8	L2, L3
Assignment - 3	05	CO9,CO10	L3
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –			
Slip test			
Final CIA Marks	20	-	•

D1. TEACHING PLAN - 1

Module - 1 Title: Introduction, Transducers and sensors 10 Hrs Appr Time: Course Outcomes Blooms a -The student should be able to: Level --Understand multi disciplinary systems CO1 L2 1 Understand working principles of transducer and sensors CO2 L2 2 Course Schedule b Level **Class No Module Content Covered** CO C01 L2 Introduction: Definition Multidisciplinary Scenario 1 2 C01 L2 Evolution of Mechatronics, 3 C01 L2 Design of Mechatronics system 4 Objectives, advantages and disadvantages of Mechatronics. C01 L2 5 Transducers and sensors: Definition and classification of transducers, C02 L2 C02 Difference between transducer and sensor. L2 6 C02 L2 7 Definition and classification of sensors 8 Principle of working and applications of light sensors C02 L2 9 Proximity switches C02 L2 10 Hall Effect sensors. C02 L2 с Application Areas CO Level 1 Multi functional CO1 L2 2 Precision works CO2 L2 d **Review Questions** CO1 L2 1 Define mechatronics. State the major differences between conventional and mechatronics product design approach. 2 C01 L2 What is sequential controller and explain with a block diagram the working of domestic washing machine. CO1 L2 3 Discuss any four of the following with neat sketch and an example: (I) Mechatronics (ii) Open loop control system. (iii) Closed loop control system (iv) Measurement system. (v) Transducers. 4 CO1 L2 Define Mechatronics. With a block diagram, briefly explain the generalized measurement system. Explain with a diagram, the working of an Engine Management system 5 CO1 L2 L2 6 CO2 Define the following transducers with examples:

	(I) Analog transducer. (ii) Digital transducer. (iii) Active transducer. (iv) Passive transducer. (v) Mechanical transducer.		
7	Explain with a neat diagram, (i) Capacitive proximity sensor. (ii) Principle of Hall effect	CO2	L2
8	List the application of light sensors	CO2	L2
9	Explain the operation of a linear variable differential transducer.	CO2	L2
10	What are position sensors? Explain the working of Hall effect sensors and mention the advantages of it.	CO2	L2
е	Experiences		
1 1		-	
2			
3			
4			
5			

Module - 2

Title:	Microprocessor & Microcontrollers	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand microprocessors and controllers	CO3	L2
2	Understand the architecture of microprocessor	CO4	L2
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Microprocessor & Microcontrollers: Introduction, Microprocessor systems	CO3	L2
2	Basic elements of control systems.	CO3	L2
3	Microcontrollers	CO3	L2
4	Difference between Microprocessor and Microcontrollers.	CO3	L2
5	Microprocessor Architecture: Microprocessor architecture,	CO4	L2
6	Terminology-CPU, memory and address, I/O and Peripheral devices	CO4	L2
7	ALU, Instruction and Program, Assembler, Data,	CO4	L2
8	Registers, Program Counter, Flags, Fetch cycle	CO4	L2
9	Write cycle, state, bus interrupts.	CO4	L2
10	Intel's 8085A Microprocessor.	CO4	L2
с	Application Areas	СО	Level
1	Development	CO3	L2
2	Structure design	CO4	L2
d	Review Questions	_	-
1	With the help of a block diagram, explain briefly the general form of a microprocessor system.	CO3	L2

2	State and explain functions of basic elements of a closed loop control	CO3	L2
	system, with a block diagram.		
3	What are micro controllers? Explain the general form of a micro	CO3	L2
	controller.		
4	Differentiate between Microprocessor and microcontrollers	CO3	L2
5	Define the following terms with respect to microprocessor: I) Fetch	CO4	L2
	cycle ii) Accumulator iii) Interrupts iv) Stack pointer v) Write cycle.		
6	Explain in detail with a block diagram, the architecture of Intel 8085 A	CO3	L2
	microprocessor		
7	With a neat flow chart, discuss the programming process.	CO4	L2
8	Distinguish between instruction cycle, machine cycle and T-state.	CO4	L2
9	Draw and explain the timing diagram for opcode fetch operation.	CO4	L2
d	Review Questions	-	-
e	Experiences	-	-
1			
2			
3			
4			
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	15ME753	Sem:	VII	Marks:	15	Time: 7	5 minutes		
Cour	se:	Mechatronic	s							
-	-				ch carry equal			Marks	CO	Level
1	а	What are t	he benefi	ts of mech	atronics in ir	ndustries	?	5	CO1	L2
	b	Define me	chatronic	s. What ar	e the advanta	ages and	disadvantages of	5	CO1	L2
		mechatron	ics?							
	с	Explain w	ith a bloc	k diagram	the working	of a digi	tal camera.	5	CO1	L2
					OR					
2	а			Transduce	ers. Name an	y three ty	pes of sensors and	d 5	CO4	L2
		transducer	s each.							
	b	Explain ca	pacitive	proximity	sensor, with a	a neat dia	agram	5	CO4	L2
	с	State and ex	plain the w	orking princ	iple of Hall Effe	ect sensor.		5	CO4	L2
3	0	XX 71 4 4	1 . 1	C	£ 1	4 9 N		6	CO3	L2
5	а	what are t requireme			of control sys	tem? Me	ention the	0	COS	L2
	b			trollers? E	Explain the ge	eneral for	rm of a micro	6	CO3	L2
		controller.								
	c	Differentia	ate betwe	en Microp	rocessor and	microco	ntrollers	3	CO3	L2
					OR					
4	а	Write the t	functiona	l block dia	gram of INT	EL 8085	microprocessor	5	CO4	L2
		and explai	n 3 impo	rtant sectio	ons of microp	processor	s.			
	b	Briefly ex	plain witl	n sketch:				5	CO4	L2
		(i) Instruct	tion regis	ter (IR) (ii)) Data registe	er				

cExplain the following terminology related to microprocessor : i)5CO4L2Program counter ii) Flag register222

b. Assignment -1

Crs Code:	15ME753	Sem:	VII	Model Assignmen Marks:	5 Time:	75 minutes	3	
Course:	Mechatro							
		answer 2-3 as			nt carries equal mark.			1
SNo	USN			Assignment Des	-	Marks	CO	Leve
1		What is a l classified?		ntroller? How	are microcontrollers	5	CO1	L2
2					1	5	CO1	L2
2		mechatron		tages and disa	dvantages of	5	COI	L2
3		Briefly ext	olain clas	sification of r	nicrocontrollers	5	CO1	L2
4					working of a digital	5	CO1	L2
		camera.		C	0 0			
5				on of a linear	variable differential	5	CO2	L2
		transducer.	•					
6		-	-	-	lain capacitive proximi	ity 5	CO2	L2
		sensor, wit						
7		-			cteristics of sensors	5	CO2	L2
8		-		-	l effect sensor.	5	CO2	L2
9		Differentia	te betwe	en transducer	s and sensors	5	CO2	L2
10				ssification of s		5	CO2	L2
11		Discuss ba	sic elem	ents of a close	d-loop system.	5	CO3	L2
12		Explain the	e followi	ng performan	ce terminologies of	5	CO4	L2
				uracy ii) Repe	atability iii) Drift iv)			
		Speed of re	1					
13				-	ro controller and menti	on 5	CO4	L2
		the functio						
14				n of logical gr	oup of instructions and	5	CO4	L2
		mention fe						
15				ng terminolog		5	CO4	L2
		-			RAM iii) Assembler			
16				-	m of INTEL 8085	5	CO4	L2
		-		l explain 3 im	portant			
		sections of	-				~~ .	
17		-		sketch of arc	nitecture 8085A	5	CO4	L2
10		microproc					GO 4	
18		-		ng terminolog	-	5	CO4	L2
		-		-	ter ii) Flag register iii)			
10				ccumulator.	600054		004	T 0
19				instruction se	ts of 8085A	5	CO4	L2
20		microproc		0.4.7.7.			004	
20				ns of ALU.		5	CO4	L2
21		Explain any	tour applic	cations of microp	rocessor.	5	CO4	L2

D2. TEACHING PLAN - 2

Module – 3

Title:	Programmable logic controller	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand concepts of automations	CO5	L2
2	Understand mechanism of mechanical actuators	CO6	L2
b	Course Schedule		
Class No		CO	Level
1	Programmable logic controller: Introduction to PLC's	CO5	L2
2	Basic structure of PLC	CO5	L2
3	Principle of operation of PLC	CO5	L2
4	Programming and concept of ladder diagram	CO5	L2
5	Concept of latching &selection of a PLC.	CO5	L2
6	Integration: Introduction & background	CO6	L2
7	Advanced actuators, Pneumatic actuators	CO6	L2
8	Industrial Robot, different parts of a Robot-Controller	CO6	L2
9	Drive, Arm, End Effectors	CO6	L2
10	Sensor & Functional requirements of robot.	CO6	L2
		CO	T
<u>c</u>	Application Areas Integration	CO CO5	Level
2	Automation	CO3	L2 L2
2		000	112
d	Review Questions	-	-
1	Draw and explain the structure of a programmable logic controller	CO5	L2
2	Explain the principle of PLC	CO5	L2
3	Explain the operation of PLC	CO5	L2
4	Explain the programming of ladder diagram	CO5	L2
5	Explain the concept of latching	CO5	L2
6	Describe the concepts of advanced actuator	CO6	L2
7	Explain the concept of pneumatic actuators	CO6	L2
8	List the application of robotics	CO6	L2
9	Explain different parts of robot controller	CO6	L2
10	Explain functional requirements of robots	CO6	L2
e	Experiences	-	-
1			
2			
3			
4			

Module-4

Title:	Mechanical actuation systems	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand mechanism of mechanical actuators	CO7	L3

2	Understand mechanism of electrical actuators	CO8	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Mechanical actuation systems: Mechanical systems	CO7	L3
2	Types of motion, Cams, Gear trains	CO7	L3
3	Ratchet & Pawl	CO7	L3
4	Belt and chain drives	CO7	L3
5	mechanical aspects of motor selection	CO7	L3
6	Electrical actuation systems: Electrical systems, Mechanical switches,	CO8	L3
7	Solenoids, Relays, DC/AC Motors, Principle of Stepper Motors & servomotors.	CO8	L3
8	Electrical actuation systems: Electrical systems, Mechanical switches	CO8	L3
9	Solenoids, Relays, DC/AC Motors	CO8	L3
10	Principle of Stepper Motors & servomotors.	CO8	L3
с	Application Areas	СО	Level
1	Processing industries	CO7	L3
2	Actuation	CO8	L3
d	Review Questions	-	-
1	Explain the types of motion	CO7	L3
2	Explain the principle of cam mechanism	CO7	L3
3	Explain gear trains mechanism	CO7	L3
4	Explain ratchet and pawl mechanism	CO7	L3
5	Explain belt and chain drives mechanism	CO7	L3
6	Explain the working principle of a permanent magnet D.C. motor. How it is used for positive control drives?	CO7	L3
7	Sketch and explain the working of stepper motor.	CO7	L3
8	What are solid state switches? Discuss any four solid state switches.	CO8	L3
9	Explain the working principle of, (i) Permanent magnet DC motor. (ii) Permanent magnet stepper motor.	CO8	L3
10	What are solenoids? What are the parameters to be consider for selecting a solenoids for an application.	CO8	L3
e	Experiences	-	-
1			
2			
3			
4			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	15ME753	Sem:	VII	Marks:	15	Time:	75 minutes		
Cour	se:	Mechatroni	cs	· · ·		·	·	·		
-	-	Note: Answ	ver any 2 qu	iestions, eac	h carry equal	marks.		Marks	СО	Level
1	а	Explain th	lain the functions of each block of PLC.							L2
	b	Explain th	xplain the operation of PLC						CO5	L2
	с	Explain lade	der diagram					5	CO5	L2
					OR					
2	а	What are	the types	of pneumat	tic actuators			5	CO6	L2
	b	What are	the types	of advance	d actuators			5	CO6	L2

ĺ	c	Explain the concepts of drive and arm	5	CO6	L3
3	а	With sketch, explain solenoid and state its uses.	5	CO7	L3
	b	What is stepper motor an and explain the working of a two stack	5	CO7	L3
		stepper motor.			
	с	Explain the theory of DC motor speed control	5	CO7	L3
		OR			
4	a	Explain the principle of stepper motor	5	CO8	L3
	b	Explain the mechanical aspects of motor selection	5	CO8	L3
	c	Explain the mechanism of electrical system	5	CO8	L3

b. Assignment – 2

				N	Iodel Assignme	ent Question	ns			
Crs Co	ode:	15ME753	Sem:	VII	Marks:	5	Time:	75 minutes		
Course		Mechatroni								
			swer 2-3 a		Each assignme		qual mark.			
SNo	USN				gnment Descri			Marks	CO	Level
1		±	1 0		gic controller	•		5	CO5	L3
2				ction of Pl				5	CO5	L3
3		Explain	the oper	ation of P	LC			5	CO5	L3
4		Explain	the conc	ept of lade	ler diagram			5	CO5	L3
5		Explain	the prind	ciple of lat	ching			5	CO5	L3
6		Explain	the type	s of pneum	natic actuator	ſS		5	CO6	L3
7		Explain	the type	s of advan	ced actuators	s?		5	CO6	L3
8		Briefly explain the application of industrial robot							CO6	L3
9				s of robot co	ontroller			5	CO6	L3
10		Explain	end effe	ctors.				5	CO6	L3
11		Explain	the mech	hanism of	mechanical s	systems		5	CO7	L3
12		Explain	the class	sification of	of types of m	otion		5	CO7	L3
13		Explain	the conc	epts of car	m and cam fo	ollower		5	CO7	L3
14		Explain	gear trai	ns mechar	nism			5	CO7	L3
15		Explain	ratchet a	nd pawl n	nechanism			5	CO7	L3
16		Explain	belt and	chain driv	es mechanis	m		5	CO7	L3
17		Explain	the type	s of solence	oids			5	CO8	L3
18		Discuss	any four	solid state	e switches.			5	CO8	L3
19						types of	stepper motor	5	CO8	L3
20		Explain	the work	king princi		nanent ma	agnet D.C. motor	5	CO8	L3

D3. TEACHING PLAN - 3

Module - 5

Title:	Pneumatic and hydraulic actuation systems	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand concepts of hydraulic and pneumatic systems	CO9	L3
2	Understand constructional features	CO10	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Pneumatic and hydraulic actuation systems: Actuating systems,	CO9	L3
2	Pneumatic and hydraulic systems	CO9	L3
3	Classifications of Valves, Pressure relief valves,	CO9	L3
4	Pressure regulating/reducing valves	CO9	L3
5	Cylinders and rotary actuators	CO9	L3
6	DCV & FCV: Principle & construction details	CO10	L3
7	Types of sliding spool valve, solenoid operated	CO10	L3
8	Symbols of hydraulic elements, components of hydraulic system	CO10	L3
9	Functions of various units of hydraulic system.	CO10	L3
10	Design of simple hydraulic circuits for various applications.	CO10	L3
с	Application Areas		
1	Fluid power	CO9	L3
2	Circuit design	CO10	L3
d	Review Questions		
1	What are the advantages of hydraulic system	CO9	L3
2	With a neat block diagram, explain he structure of hydraulic power	CO9	L3
	system.	~~~	
3	Explain with neat sketch of pilot operated pressure Relief valve.	CO9	L3
4	Write any five desirable properties of a hydraulic fluid.	CO9	L3
5	Sketch and explain structure of pneumatic control system.	CO9	L3
6	Explain with neat sketch of circuit of sequencing of two pneumatic cylinder that can be done by using Solenoids, limit switches and valves.	CO10	L3
7	Explain the pressure dependent control of circuit with a 5/2 double pilot operated DCV, two 3/2 spring return and double acting cylinder.	CO10	L3
8	Explain with a neat circuit diagram, the working of double pump hydraulic system.	CO10	L3
9	Explain with a neat circuit diagram, the counter balance valve application.	CO10	L3
10	With circuit diagram explain the application of accumulator as hydraulic shock absorber.	CO10	L3
е	Experiences	-	-
1	•		
2			
3			
4			
5			
			1

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code:	15ME753	Sem:	VII	Marks:	15	Time:	75 minutes
Course:	Mechatronics	8					

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	СО	Level
1	а	Explain pressure reducing valve with graphical symbol.	5	CO9	L2
	b	With circuit diagram explain meter in circuit for controlling the speed	5	CO9	L2
		of hydraulic cylinders.			
	С	State Pascal's law? With a neat sketch explain the basic hydraulic power system	5	CO9	L2
		OR			
2	а	Describe with a circuit diagram the construction and working of a	6	CO9	L2
		counter balance valve in hydraulic circuit			
	b	What are the types of pneumatic actuators? With sketch explain the	6	CO9	L2
		construction and working principle of single acting cylinder.			
	с	Differentiate hydraulic and pneumatic system.	3	CO9	L2
3	a	Explain quick exhaust valve with circuit diagram	5	CO9	L2
	b	With a neat sketch, explain Hydraulic circuit for sequencing of Two cylinders.	5	CO9	L2
	c	Sketch and explain structure of a hydraulic control system	5	CO9	L2
		OR			
4	a	Briefly classify valves based on the type of function performed.	5	CO9	L2
	b	What are flow control valves? Draw graphical symbols for F.C.V.	5	CO9	L2
	с	What are the advantages, limitations and applications of hydraulic	5	CO9	L3
		systems?			

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

11010.1	n uist	met assigm	hent to be assi	U						
a a		1 53 55 5 5 5	a		lodel Assignme			•		
Crs Co		15ME753	Sem:	VII	Marks:	5 / 10	Time:	75 minute	es	
Course		Mechatro								
			inswer 2-3 assi		Each assignme		al mark.		1	
SNo		USN			Assignment De			Marks		Level
1			With a schen relief valve.	natic diag	ram, explain t	he working	of simple pressu	re 5	CO9	L3
2			Write a note o	n direct ar	nd indirect actu	ation of pneur	matic cylinders.	5	CO9	L3
3			Explain with a simple pressure		ch construction	and operation	n of	5	CO9	L3
4			Give the differ	rence betw	veen hydraulic	and pneumation	c system	5	CO9	L3
5			Explain with Hydraulic mot		circuit, how s	peed control	can be achieved	in 5	CO9	L3
6		Sketch and explain a cushion assembly for a pneumatic cylinder.					5	CO9	L3	
7				ylinders	-		quencing of tw olenoids, limit		CO9	L3
8			Explain wit pump hydra		0	am, the wor	king of double	5	CO9	L3
9			With a neat for single ac		-	orking of li	near actuator	5	CO9	L3
10				construc	-		With sketch ple of single	5	CO9	L3
11			With sketch b	riefly expl	ain linear hydra	aulic actuators	S.	5	CO10	L3
12			Explain with	a neat sk		king of four	way, two positio	on 5	CO10	L3
13					ch construction			5	CO10	L3

	of simple pressure relief valve.			
14	Explain with a neat circuit diagram the working of a	5	CO10	L3
	regenerative circuit			
15	Explain with a neat sketch construction and operation of a typical quick	5	CO10	L3
	exhaust valve to increase the actuation speed of a cylinder in a			
	pneumatic system.			
16	Explain the Motion control diagram for a 2 cylinder circuit.	5	CO10	L3
17	Write a note on relays used in electro pneumatic control.	5	CO10	L3
18	Sketch and explain the operation of a hydraulic circuit for the control of	5	CO10	L3
	a spring return-single acting cylinder			
19	Sketch and explain any two types of spool valve	5	CO10	L3
20	Sketch and explain solenoid operated DCV	5	CO10	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cour	se:	Mechatronics Month.	/ Year	Dec /20	
Crs Code:		15ME753 Sem: VII Marks: 80 Time:		180 mi	
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks		Level
1	a	Explain the objectives of mechatronics Explain the working principle of Hall Effect sensor.	6	CO1	L2
	b	6	CO1	L2	
	c	List the advantages and disadvantages of mechatronics	4	CO1	L2
		OR			
2	а	Explain the design of mechatronics system	6	CO4	L2
	b	Define Sensors and Transducers. Name any three types of sensors and transducers each.	6	CO4	L2
	c	List the application of light sensors	4	CO4	L2
3	а	Explain microprocessor system	5	CO3	L2
	b	Briefly explain elements of closed-loop control system	7	CO3	L2
	c	Differentiate between Microprocessor and micro controllers	4	CO3	L2
		OR			
4	а	What are micro controllers? Explain the general form of a micro controller.	5	CO4	L2
	b	Explain the architecture Intel's 8085A	6	CO4	L2
	с	Define the following terms with respect to microprocessor: I) Fetch	5	CO4	L2
		cycle ii) Accumulator iii) Interrupts iv) Stack pointer v) Write cycle.			
5	а	Explain the programming of ladder diagram	6	CO5	L2
	b	Explain the concept of latching	5	CO5	L2
	с	Explain basic structure of PLC	4	CO5	L2
		OR			
6	a	Write a note on i)advanced actuators ii) Pneumatic actuators	6	CO6	L2
	b	Explain different parts of a robot controller	6	CO6	L2
	c	List out the application of robot	4	CO6	L3
7	-		7	007	L3
7	a	Briefly explain types of motion		CO7	
	b	Write short note on i) Cams ii) Gear trains iii) Ratchet & Pawl	9	CO7	L3
0		OR	7	000	1.2
8	a	Explain electrical systems and mechanical systems	7	CO8	L3
	b	Write short note on i) Solenoids ii) Relays iii) servomotors	9	CO8	L3

9	а	Explain actuation systems	4	CO9	L3
	b	Explain cylinder actuators	4	CO9	L3
	c	Explain Pressure regulating valves	4	CO9	L3
		OR			
10	а	Explain the principle of DCV	4	CO10	L3
	b	Explain the symbols of hydraulic elements	4	CO10	L3
	c	Explain the types of valve	4	CO10	L3

2. SEE Important Questions

Course	:	Mechatronics	Month / Year	Dec /20)19
Crs Code:			Time:	180 mi	nutes
		Answer all FIVE full questions. All questions carry equal marks.	-	-	
Modul e	Qno.	Important Question	Marks	CO	Year
1	1	Define mechatronics. State the major differences between conventional and mechatronics product design approach.	4	CO1	
	2	With a block diagram, briefly explain the generalized measurement system.	4	CO1	
	3	Define the following transducers with examples: (I) Analog transducer. (ii) Digital transducer. (iii) Active transducer. (iv) Passive transducer. (v) Mechanical transducer.	4	CO2	
	4	Explain with a neat diagram, (i) Capacitive proximity sensor. (ii) Principle of Hall effect	4	CO2	
2	1	Discuss basic elements of a closed-loop system.	4	CO3	
	2	Draw the block diagram of a micro controller and mention the functions of each block.	4	CO3	
	3	Explain the flow of instruction sets of 8085A microprocessor.	5	CO4	
	4	List out the functions of ALU	3	CO4	
3	1	Explain the operation of PLC	4	CO5	
	2	Explain the concept of ladder diagram	4	CO5	
	3	Explain the concepts of advanced actuators?	4	CO6	
	4	Explain the concepts of robot controller	4	CO6	
4	1	Explain gear trains mechanism	4	CO7	
	2	Explain ratchet and pawl mechanism	4	CO7	
	3	Explain the concepts of solenoids	4	CO8	
	4	Explain the principle of stepper motor	4	CO8	
5	1	Explain with a neat sketch construction and operation of simple pressure valve.	relief 4	CO9	
	2	What are the types of pneumatic actuators? With sketch explain the construction and working principle of single acting cylinde		CO9	
	3	Sketch and explain any two types of spool valve	4	CO10	
	4	Sketch and explain solenoid operated DCV	4	CO10	

G. Content to Course Outcomes 1. TLPA Parameters

	Tabl	e 1: TLPA	<u>\</u>				
Mo dul e- #	(Split module content into 2 parts which have		Blooms' Learning Levels for Content		Identified Action Verbs for Learning	Instructio n Methods for Learning	Assessment Methods to Measure Learning
<i>A</i>		С	D L2	E L2	F	G	H
1	Introduction:Definition, Multidisciplinary Scenario, Evolution of Mechatronics,Design of Mechatronics system, Objectives, advantages and disadvantages of Mechatronics.	3	L2	L2	- Understan d	- Lecture	- Assignment
1	Transducers and sensors:Definition and classification of transducers, Difference between transducer and sensor, Definition and classification of sensors, Principle of working and applications of light sensors, proximity switches and Hall Effect sensors.	7	L2	L2	- Understan d -	- Lecture/T utorial	- Assignment
	Microprocessor & Microcontrollers: Introduction, Microprocessor systems, Basic elements of control systems, Microcontrollers, Difference between Microprocessor and Microcontrollers.	4	L2	L2	- Understan d -	- Lecture -	- Assignment
2	Microprocessor Architecture: Microprocessor architecture and terminology-CPU, memory and address, I/O and Peripheral devices, ALU, Instruction and Program, Assembler, Data, Registers, Program Counter, Flags, Fetch cycle, write cycle, state, bus interrupts. Intel's 8085A Microprocessor.	6	L2	L2	- Understan d -	- Lecture	- Assignment
3	Programmable logic controller: Introduction to PLC's, basic structure, Principle of operation, Programming and concept of ladder diagram, concept of latching &selection of a PLC.	5	L2	L2	- Understan d -	- Lecture/T utorial	- Assignment
	Integration: Introduction & background, Advanced actuators, Pneumatic actuators, Industrial Robot, different parts of a Robot- Controller, Drive, Arm, End Effectors, Sensor & Functional requirements of robot.	5	L2	L2	- Understan d -		- Assignment
4	Mechanical actuation systems: Mechanical systems, types of motion, Cams, Gear trains, Ratchet & Pawl, belt and chain		L2 L3	L3	- Understan d	- Lecture	- Assignment

	drives, mechanical aspects of motor selection.	5			-Apply -		
4	Electrical actuation systems:Electrical systems, Mechanical switches, Solenoids,Relays, DC/AC Motors, Principle of Stepper Motors & servomotors.	5	L2 L3	L3	- Understan d -Apply -	- Lecture	- Assignment
5	Pneumatic and hydraulic actuation systems: Actuating systems, Pneumatic and hydraulic systems, Classifications of Valves, Pressure relief valves, Pressure regulating/reducing valves, Cylinders and rotary actuators.	5	L2 L3	L3	- Understan d -Apply	- Lecture/T utorial	- Assignment
5	DCV & FCV: Principle & construction details, types of sliding spool valve, solenoid operated, Symbols of hydraulic elements, components of hydraulic system, functions of various units of hydraulic system. Design of simple hydraulic circuits for various applications.	5	L2 L3	L3	- Understan d -Apply	- Lecture	- Assignment

2. Concepts and Outcomes:

	<u>Table 2: Concept to Outcome –</u>									
Mo	0	Identified	Final Concept	Concept Justification	CO Components	Course Outcome				
dul		Concepts		(What all Learning	(1.Action Verb,					
e- #	~	from		Happened from the	2.Knowledge,					
	Content or	Content		study of Content /	3.Condition /	Student Should be				
	Syllabus			Syllabus. A short word		able to				
				for learning or	4.Benchmark)					
				outcome)						
Α	Ι	J	K	L	М	N				
1	-Multi	-	Inter	Multidisciplinary	- Understand Multi	Understand multi				
	1 1	Disciplinar	disciplinary	Scenario	disciplinary systems	disciplinary systems				
	systems	y systems	system							
1	- Working	Mechatroni		Different principles	- Understand different	Understand working				
	principles	cs systems	Components	and working of	principles and working	principles of transducer				
				mechatronics systems.	of mechatronics	and sensors				
					systems.					
2	-Control	- Elements		Microprocessor and	-Understand concepts	Understand				
	Systems		control systems	Micro controller	of control systems	microprocessors and				
						controllers				
2	Architecture	Different	Architectu	Terminologies of	Microprocessor	Understand the				
	system.	microproce		microprocessor	architecture and	architecture of				
		ssors	10		terminology	microprocessor				
3	Logic functions	Principles	Logic Control	Different	Memory devices	Understand the logic				
		and		programmable logic	•	controllers				
		working		diagrams						
3	Automation	Actuators	Integration	Different actuators	Controlling devices.	Understand concepts of				
L						automations				
4	Mechanism of	Mechanical	Mechanisms	Types of Mechanical	Mechanical Actuators	Understand mechanism				
	mechanical	ascepts		Actuators		of mechanical actuators				
	actuators	-								
4	Mechanism of	Electrical	Components	Types of Electrical	Electrical actuators	Understand mechanism				
	alaatmiaal	ascepts		Actuators		of electrical actuators				
		uscepus		1	1					

	actuators					
4	Hydraulic and	Actuating	Actuators	Working of Hydraulic	Hydraulic and	Understand concepts of
	pneumatic	systems		and pneumatic	pneumatic actuating	hydraulic and
	systems	systems		actuators	systems	pneumatic systems
4	Control Valves	Principle &	Working	Components of	functions of various	Understand
		constructio	principles	hydraulic system	units of hydraulic	constructional features
		n of control			system	
		Valves				